Thursday, 18th April 2024
To guardian.ng
Search

Young human blood makes old mice smarter

By Chukwuma Muanya, Assistant Editor
26 April 2017   |   3:40 am
Blood from younger humans may have similar rejuvenating effects on older animals as blood from young mice. A protein found in young human blood plasma can improve brain function in old mice.

For decades, researchers have studied the effects of young blood on ageing in mice through a technique called parabiosis, in which an old mouse is sewn together with a younger one so that they share a circulatory system.

*Mice treated with plasma improved their performance on memory tests

Blood from younger humans may have similar rejuvenating effects on older animals as blood from young mice. A protein found in young human blood plasma can improve brain function in old mice. The finding, published on 19 April in Nature, is the first time a human protein has been shown to have this effect. It is also the latest evidence that infusions of ‘young blood’ can reverse symptoms of ageing, including memory loss, decrease in muscle function and metabolism, and loss of bone structure.

For decades, researchers have studied the effects of young blood on ageing in mice through a technique called parabiosis, in which an old mouse is sewn together with a younger one so that they share a circulatory system.

Until now, the rejuvenating properties of young blood had only been demonstrated in mouse-to-mouse transfers. Nevertheless, the work has inspired ongoing clinical trials by at least two companies in which elderly people are infused with blood from younger adult donors and then tested for physical improvements. One of the clinical trials is sponsored by a company that neuroscientist Tony Wyss-Coray, at Stanford University in California, is involved with — he’s the chair of their scientific advisory board. As part of his work, he and fellow neuroscientist Joseph Castellano, also at Stanford, have started testing plasma collected from the umbilical cords of newborn babies. Their goal is to find out how very young human blood might affect the symptoms of ageing.

Infusing this human plasma into the veins of elderly mice, they found, improved the animals’ ability to navigate mazes and to learn to avoid areas of their cages that deliver painful electrical shocks. When the researchers dissected the animals’ brains, they found that cells in the hippocampus — the region associated with learning and memory — expressed genes that caused neurons to form more connections in the brain. This didn’t happen in mice treated with blood from older human donors.

The researchers then compared a slate of 66 proteins found in umbilical cord plasma to the proteins in plasma from older people, and to proteins identified in the mouse parabiosis experiments. They found several potential candidates, and injected them, one at a time, into the veins of old mice. The team then ran the animals through the memory experiments. Only one of these proteins, TIMP2, improved the animals’ performance. It did not, however, result in regeneration of brain cells that are lost during normal ageing. Injections of human umbilical cord plasma lacking TIMP2 had no effect on memory. The researchers don’t yet know how TIMP2, which is known to be involved in maintaining cell and tissue structure, exerts its effect on memory. And although it is expressed in the brains of young mice, TIMP2 has never before been linked to learning or memory. Wyss-Coray suspects that the protein functions as a ‘master regulator’ of genes involved in the growth of cells and blood vessels, and that increasing its levels affects many pathways simultaneously.

In this article

0 Comments